Damm Donald Trump to hell

A measure of how much harm people who voted for Trump have done to this country

In [55]:
# #downloads Summary Data Tables
#
# I copied the data from the table, pasted into gedit and saved it.  The file
# has commas per normal rules and variable number of spaces.

import csv
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

FILENAME_CHDBC = "cases_hospitalizations_deaths_by_county.tsv"
FILENAME_WSCPOP = "WashingtonStateCounty_population_2021.csv"
VOTES_2020 = "2020_vote.tsv"

county_dict = dict()

# The fields xfer_in and xfer_out are from the Seattle Times, Sep. 30, 2021 at 6:00 am
# https://www.seattletimes.com/seattle-news/slammed-by-covid-19-statewide-system-helps-transfer-rural-washington-patients-to-available-hospital-beds/
In [56]:
cases_df = pd.read_csv(FILENAME_CHDBC, sep="\t")
print(cases_df)    
          County   Cases  Hospitalizations  Deaths  xfer_out  xfer_in
0          Adams    2350               119      24        13        0
1         Asotin    1696               114      31         7        1
2         Benton   21269              1076     242        11        7
3         Chelan    7502               356      74        13       12
4        Clallam    1859               100      16        13        0
5          Clark   28500              1587     311         0        0
6       Columbia     180                22       6         0        0
7        Cowlitz    7906               421     103         2        0
8        Douglas    4069               184      23         0        0
9          Ferry     438                35       8         5        0
10      Franklin   14607               669     126        13        2
11      Garfield     142                13       6         0        0
12         Grant   10566               513      95        28        0
13  Grays Harbor    5051               269      82        33        0
14        Island    2305               130      31         1        0
15     Jefferson     549                41       4         1        0
16          King  123285              6919    1691         0      229
17        Kitsap    9987               428     126         0        4
18      Kittitas    3619               134      38        16        8
19     Klickitat    1011                53      13         4        0
20         Lewis    6105               466      83        43        0
21       Lincoln     747                56      12         3        0
22         Mason    3208               151      40        10        1
23      Okanogan    2940               195      42        46        0
24       Pacific    1153                49      17        26        0
25  Pend Oreille     900                54       9        10        0
26        Pierce   63295              3914     674         1       45
27      San Juan     214                 5       0         1        0
28        Skagit    6634               397      80        15        6
29      Skamania     419                19       1         0        0
30     Snohomish   45418              2773     628         0       20
31       Spokane   50939              3039     703         3       50
32       Stevens    2633               193      32        39        4
33      Thurston   12877               839     125         0        8
34     Wahkiakum     178                 9       4         0        0
35   Walla Walla    6370               330      75         2        2
36       Whatcom   10785               529     109         0        6
37       Whitman    4475               137      53         3        5
38        Yakima   32621              1714     464        29        2
39    Unassigned    1632                20       3         0        0
In [57]:
pop_df = pd.read_csv(FILENAME_WSCPOP, sep=",")
pop_df.rename(columns={'CTYNAME':'County'}, inplace = True)
print(pop_df)
          County  pop2021  GrowthRate  popDensity
0           King  2301620     18.7412   1353.5612
1         Pierce   927428     16.6004    545.4117
2      Snohomish   840131     17.4187    494.0732
3        Spokane   541188     14.6388    318.2676
4          Clark   501869     17.6153    295.1445
5       Thurston   299496     18.3774    176.1308
6         Kitsap   275867      9.6098    162.2348
7         Yakima   251495      2.9637    147.9019
8        Whatcom   237347     17.7638    139.5815
9         Benton   210598     19.3426    123.8507
10        Skagit   131945     12.8275     77.5956
11       Cowlitz   114275     11.6425     67.2041
12         Grant    99855     11.4976     58.7238
13      Franklin    97660     23.4999     57.4329
14        Island    86969     10.5168     51.1457
15         Lewis    82983      9.9083     48.8015
16       Clallam    78891     10.3324     46.3951
17        Chelan    78096      7.3485     45.9275
18  Grays Harbor    77581      6.4971     45.6247
19         Mason    69544     14.5078     40.8982
20   Walla Walla    61050      3.6239     35.9029
21       Whitman    50946     13.7289     29.9609
22      Kittitas    49089     19.7585     28.8688
23       Stevens    46721      7.4738     27.4762
24       Douglas    44789     16.2928     26.3400
25      Okanogan    42495      3.0707     24.9909
26     Jefferson    33171     10.9435     19.5076
27       Pacific    23265     11.4278     13.6819
28     Klickitat    23003     12.8926     13.5278
29        Asotin    22514      3.6318     13.2403
30         Adams    20477      8.9782     12.0423
31      San Juan    18498     17.2021     10.8785
32  Pend Oreille    14000      8.1081      8.2333
33      Skamania    12411     11.6499      7.2988
34       Lincoln    11365      7.4908      6.6837
35         Ferry     7605      0.7952      4.4724
36     Wahkiakum     4634     16.3445      2.7252
37      Columbia     3877     -5.3004      2.2800
38      Garfield     2195     -2.9191      1.2909
In [58]:
# Merge the two data frames
df = pd.merge(pop_df, cases_df, on = "County", how = "inner")
print(df)
          County  pop2021  GrowthRate  popDensity   Cases  Hospitalizations  \
0           King  2301620     18.7412   1353.5612  123285              6919   
1         Pierce   927428     16.6004    545.4117   63295              3914   
2      Snohomish   840131     17.4187    494.0732   45418              2773   
3        Spokane   541188     14.6388    318.2676   50939              3039   
4          Clark   501869     17.6153    295.1445   28500              1587   
5       Thurston   299496     18.3774    176.1308   12877               839   
6         Kitsap   275867      9.6098    162.2348    9987               428   
7         Yakima   251495      2.9637    147.9019   32621              1714   
8        Whatcom   237347     17.7638    139.5815   10785               529   
9         Benton   210598     19.3426    123.8507   21269              1076   
10        Skagit   131945     12.8275     77.5956    6634               397   
11       Cowlitz   114275     11.6425     67.2041    7906               421   
12         Grant    99855     11.4976     58.7238   10566               513   
13      Franklin    97660     23.4999     57.4329   14607               669   
14        Island    86969     10.5168     51.1457    2305               130   
15         Lewis    82983      9.9083     48.8015    6105               466   
16       Clallam    78891     10.3324     46.3951    1859               100   
17        Chelan    78096      7.3485     45.9275    7502               356   
18  Grays Harbor    77581      6.4971     45.6247    5051               269   
19         Mason    69544     14.5078     40.8982    3208               151   
20   Walla Walla    61050      3.6239     35.9029    6370               330   
21       Whitman    50946     13.7289     29.9609    4475               137   
22      Kittitas    49089     19.7585     28.8688    3619               134   
23       Stevens    46721      7.4738     27.4762    2633               193   
24       Douglas    44789     16.2928     26.3400    4069               184   
25      Okanogan    42495      3.0707     24.9909    2940               195   
26     Jefferson    33171     10.9435     19.5076     549                41   
27       Pacific    23265     11.4278     13.6819    1153                49   
28     Klickitat    23003     12.8926     13.5278    1011                53   
29        Asotin    22514      3.6318     13.2403    1696               114   
30         Adams    20477      8.9782     12.0423    2350               119   
31      San Juan    18498     17.2021     10.8785     214                 5   
32  Pend Oreille    14000      8.1081      8.2333     900                54   
33      Skamania    12411     11.6499      7.2988     419                19   
34       Lincoln    11365      7.4908      6.6837     747                56   
35         Ferry     7605      0.7952      4.4724     438                35   
36     Wahkiakum     4634     16.3445      2.7252     178                 9   
37      Columbia     3877     -5.3004      2.2800     180                22   
38      Garfield     2195     -2.9191      1.2909     142                13   

    Deaths  xfer_out  xfer_in  
0     1691         0      229  
1      674         1       45  
2      628         0       20  
3      703         3       50  
4      311         0        0  
5      125         0        8  
6      126         0        4  
7      464        29        2  
8      109         0        6  
9      242        11        7  
10      80        15        6  
11     103         2        0  
12      95        28        0  
13     126        13        2  
14      31         1        0  
15      83        43        0  
16      16        13        0  
17      74        13       12  
18      82        33        0  
19      40        10        1  
20      75         2        2  
21      53         3        5  
22      38        16        8  
23      32        39        4  
24      23         0        0  
25      42        46        0  
26       4         1        0  
27      17        26        0  
28      13         4        0  
29      31         7        1  
30      24        13        0  
31       0         1        0  
32       9        10        0  
33       1         0        0  
34      12         3        0  
35       8         5        0  
36       4         0        0  
37       6         0        0  
38       6         0        0  
In [59]:
# From https://results.vote.wa.gov/results/20201103/president-vice-president_bycounty.html
# then fixed by hand.  In retrospect, it was probably faster to clean up the
# files by hand than to write software to do it for me.
election_df = pd.read_csv(VOTES_2020, sep="\t")
print(election_df)


"""
with open(VOTES_2020, "r") as f:
    c = csv.DictReader(f, delimiter="\t", dialect="unix")
    for row in c:
        for k in ['Biden', 'Trump']:
            row[k] = int(row[k])
        row["Victory"] = ( row["Trump"] - row["Biden"] ) / \
                             (row["Trump"] + row["Biden"])
        print(row)
        county_dict[row['County']]["Trump"] = row["Trump"]
        county_dict[row['County']]["Biden"] = row["Biden"]
        county_dict[row['County']]["Victory"] = row["Victory"]


    for k in county_dict:
        print( k, county_dict[k] )

    print("County\tcases/100\thospitalizations/100\tDeaths/100\tVictory")
    for k in county_dict:
        if "Unassigned" == k:
            continue
        try:
            p = county_dict[k]["pop2021"]
        except KeyError as ke:
            print(f"KeyError was raised when getting p.  k is {k}")
            raise
        print(f'{k}\t{county_dict[k]["Cases"]/p:8.5f}',
              f'\t{county_dict[k]["Hospitalizations"]/p:8.5f}',
              f'\t{county_dict[k]["Deaths"]/p:9.6f}',
              f'\t{county_dict[k]["Victory"]:9.3f}')
"""
          County   Biden   Trump
0          Adams    1814    3907
1         Asotin    4250    7319
2         Benton   38706   60365
3         Chelan   19349   22746
4        Clallam   24721   23062
5          Clark  140324  126303
6       Columbia     668    1754
7        Cowlitz   23938   34424
8        Douglas    7811   12955
9          Ferry    1486    2771
10      Franklin   13340   18039
11      Garfield     366    1069
12         Grant   11819   24764
13  Grays Harbor   17354   19877
14        Island   29213   22746
15     Jefferson   17204    6931
16          King  907310  269167
17        Kitsap   90277   61563
18      Kittitas   11421   14105
19     Klickitat    5959    7237
20         Lewis   14520   29391
21       Lincoln    1713    5150
22         Mason   17269   18710
23      Okanogan    8900   11840
24       Pacific    6794    6953
25  Pend Oreille    2593    5728
26        Pierce  249506  197730
27      San Juan    9725    3057
28        Skagit   38252   32762
29      Skamania    3192    3885
30     Snohomish  256728  166428
31       Spokane  135765  148576
32       Stevens    7839   19808
33      Thurston   96608   65277
34     Wahkiakum    1165    1741
35   Walla Walla   13690   16400
36       Whatcom   83660   50489
37       Whitman   11184    9067
38        Yakima   43179   50555
Out[59]:
'\nwith open(VOTES_2020, "r") as f:\n    c = csv.DictReader(f, delimiter="\t", dialect="unix")\n    for row in c:\n        for k in [\'Biden\', \'Trump\']:\n            row[k] = int(row[k])\n        row["Victory"] = ( row["Trump"] - row["Biden"] ) /                              (row["Trump"] + row["Biden"])\n        print(row)\n        county_dict[row[\'County\']]["Trump"] = row["Trump"]\n        county_dict[row[\'County\']]["Biden"] = row["Biden"]\n        county_dict[row[\'County\']]["Victory"] = row["Victory"]\n\n\n    for k in county_dict:\n        print( k, county_dict[k] )\n\n    print("County\tcases/100\thospitalizations/100\tDeaths/100\tVictory")\n    for k in county_dict:\n        if "Unassigned" == k:\n            continue\n        try:\n            p = county_dict[k]["pop2021"]\n        except KeyError as ke:\n            print(f"KeyError was raised when getting p.  k is {k}")\n            raise\n        print(f\'{k}\t{county_dict[k]["Cases"]/p:8.5f}\',\n              f\'\t{county_dict[k]["Hospitalizations"]/p:8.5f}\',\n              f\'\t{county_dict[k]["Deaths"]/p:9.6f}\',\n              f\'\t{county_dict[k]["Victory"]:9.3f}\')\n'
In [60]:
df = pd.merge(df, election_df, on = "County", how = "inner")
print(df.loc[:, ["County", "pop2021", "Cases", "Hospitalizations", "Deaths"]])
          County  pop2021   Cases  Hospitalizations  Deaths
0           King  2301620  123285              6919    1691
1         Pierce   927428   63295              3914     674
2      Snohomish   840131   45418              2773     628
3        Spokane   541188   50939              3039     703
4          Clark   501869   28500              1587     311
5       Thurston   299496   12877               839     125
6         Kitsap   275867    9987               428     126
7         Yakima   251495   32621              1714     464
8        Whatcom   237347   10785               529     109
9         Benton   210598   21269              1076     242
10        Skagit   131945    6634               397      80
11       Cowlitz   114275    7906               421     103
12         Grant    99855   10566               513      95
13      Franklin    97660   14607               669     126
14        Island    86969    2305               130      31
15         Lewis    82983    6105               466      83
16       Clallam    78891    1859               100      16
17        Chelan    78096    7502               356      74
18  Grays Harbor    77581    5051               269      82
19         Mason    69544    3208               151      40
20   Walla Walla    61050    6370               330      75
21       Whitman    50946    4475               137      53
22      Kittitas    49089    3619               134      38
23       Stevens    46721    2633               193      32
24       Douglas    44789    4069               184      23
25      Okanogan    42495    2940               195      42
26     Jefferson    33171     549                41       4
27       Pacific    23265    1153                49      17
28     Klickitat    23003    1011                53      13
29        Asotin    22514    1696               114      31
30         Adams    20477    2350               119      24
31      San Juan    18498     214                 5       0
32  Pend Oreille    14000     900                54       9
33      Skamania    12411     419                19       1
34       Lincoln    11365     747                56      12
35         Ferry     7605     438                35       8
36     Wahkiakum     4634     178                 9       4
37      Columbia     3877     180                22       6
38      Garfield     2195     142                13       6
In [61]:
df["Victory"] = ( df["Trump"] - df["Biden"])/(df["Biden"] + df["Trump"])
df["Cases/100"] = df["Cases"]/df["pop2021"]
df["Hospitalizations/100"] = df["Hospitalizations"]/df["pop2021"]
df["Deaths/100"] = df["Deaths"]/df["pop2021"]
print(df.loc[:, ["County", "Victory", "Cases/100", "Hospitalizations/100", "Deaths/100"]])
          County   Victory  Cases/100  Hospitalizations/100  Deaths/100
0           King -0.542419   0.053564              0.003006    0.000735
1         Pierce -0.115769   0.068248              0.004220    0.000727
2      Snohomish -0.213396   0.054061              0.003301    0.000748
3        Spokane  0.045055   0.094124              0.005615    0.001299
4          Clark -0.052587   0.056788              0.003162    0.000620
5       Thurston -0.193539   0.042996              0.002801    0.000417
6         Kitsap -0.189107   0.036202              0.001551    0.000457
7         Yakima  0.078691   0.129708              0.006815    0.001845
8        Whatcom -0.247270   0.045440              0.002229    0.000459
9         Benton  0.218621   0.100993              0.005109    0.001149
10        Skagit -0.077309   0.050279              0.003009    0.000606
11       Cowlitz  0.179672   0.069184              0.003684    0.000901
12         Grant  0.353853   0.105813              0.005137    0.000951
13      Franklin  0.149750   0.149570              0.006850    0.001290
14        Island -0.124464   0.026504              0.001495    0.000356
15         Lewis  0.338662   0.073569              0.005616    0.001000
16       Clallam -0.034719   0.023564              0.001268    0.000203
17        Chelan  0.080698   0.096061              0.004558    0.000948
18  Grays Harbor  0.067766   0.065106              0.003467    0.001057
19         Mason  0.040051   0.046129              0.002171    0.000575
20   Walla Walla  0.090063   0.104341              0.005405    0.001229
21       Whitman -0.104538   0.087838              0.002689    0.001040
22      Kittitas  0.105148   0.073723              0.002730    0.000774
23       Stevens  0.432922   0.056356              0.004131    0.000685
24       Douglas  0.247713   0.090848              0.004108    0.000514
25      Okanogan  0.141755   0.069185              0.004589    0.000988
26     Jefferson -0.425647   0.016551              0.001236    0.000121
27       Pacific  0.011566   0.049559              0.002106    0.000731
28     Klickitat  0.096848   0.043951              0.002304    0.000565
29        Asotin  0.265278   0.075331              0.005064    0.001377
30         Adams  0.365845   0.114763              0.005811    0.001172
31      San Juan -0.521671   0.011569              0.000270    0.000000
32  Pend Oreille  0.376758   0.064286              0.003857    0.000643
33      Skamania  0.097923   0.033760              0.001531    0.000081
34       Lincoln  0.500801   0.065728              0.004927    0.001056
35         Ferry  0.301856   0.057594              0.004602    0.001052
36     Wahkiakum  0.198211   0.038412              0.001942    0.000863
37      Columbia  0.448390   0.046428              0.005674    0.001548
38      Garfield  0.489895   0.064692              0.005923    0.002733
In [67]:
# Eventually, move this to the top of the program, with the other imports
from mpl_toolkits.axes_grid1 import host_subplot
from mpl_toolkits import axisartist

cases_color = 'g'
cases_marker = "+"
hospitalizations_color = 'm'
hospitalizations_marker = '^'
deaths_color = 'r'
deaths_marker = "x"

# This method came from https://stackoverflow.com/questions/15910019/annotate-data-points-while-plotting-from-pandas-dataframe
def annotate_df(ax, row):  
    ax.annotate(row.name, row.values,
                xytext=(10,-5), 
                textcoords='offset points',
                size=18, 
                color='black')

plt.figure(figsize=(24,16))

# This comes from https://matplotlib.org/stable/gallery/axisartist/demo_parasite_axes2.html#sphx-glr-gallery-axisartist-demo-parasite-axes2-py
ax1 = host_subplot(111, axes_class=axisartist.Axes)

plt.subplots_adjust(right=0.75)
ax2 = ax1.twinx()
ax2.axis["right"].toggle(all=True)


ax3 = ax1.twinx()
ax3.axis["right"] = ax2.new_fixed_axis(loc="right", offset=(60, 0))
ax3.axis["right"].toggle(all=True)

df.plot(x="Victory", y="Cases/100", kind="scatter", ax=ax1, marker=cases_marker, color=cases_color)
ax1.set_ylabel("Cases/100 people")

df.plot(x="Victory", y="Hospitalizations/100", kind="scatter", ax=ax2, marker=hospitalizations_marker, color=hospitalizations_color)
ax2.set_ylabel("Hospitalizations/100 people")


df.plot(x="Victory", y="Deaths/100", kind="scatter", ax=ax3, marker=deaths_marker, color=deaths_color)
ax3.set_ylabel("Deaths/100 people")

for i, point in df.iterrows():
    ax1.text(point['Victory'], point['Cases/100'], point['County'], size=12)
    ax2.text(point['Victory'], point['Hospitalizations/100'], point['County'], size=12)
    ax3.text(point['Victory'], point['Deaths/100'], point['County'], size=12)

ax1.set_xlabel("Trump's margin of victory")

    
ax1.axis["left"].label.set_color(cases_color)
ax2.axis["right"].label.set_color(hospitalizations_color)
ax3.axis["right"].label.set_color(deaths_color)

x_lin = list()                     # The starting and ending points of the linear fit
y_cases = list()
y_deaths = list()
y_hospitalizations = list()
x_lin.append( min(df.Victory) )
x_lin.append( max(df.Victory) )
m_cases, b_cases = np.polyfit(df.Victory, df["Cases/100"], 1)
m_deaths, b_deaths = np.polyfit(df.Victory, df["Deaths/100"], 1)
m_hospitalizations, b_hospitalizations = np.polyfit(df.Victory, df['Hospitalizations/100'], 1)
y_cases.append ( m_cases * x_lin[0] + b_cases )
y_cases.append ( m_cases * x_lin[1] + b_cases )
y_hospitalizations.append ( m_hospitalizations * x_lin[0] + b_hospitalizations )
y_hospitalizations.append ( m_hospitalizations * x_lin[1] + b_hospitalizations )
y_deaths.append ( m_deaths * x_lin[0] + b_deaths )
y_deaths.append ( m_deaths * x_lin[1] + b_deaths )
ax1.plot(x_lin, y_cases, color=cases_color)
ax2.plot(x_lin, y_hospitalizations, color=hospitalizations_color)
ax2.plot(x_lin, y_deaths, color=deaths_color)

plt.savefig("COVID-19_rates_as_a_function_of_Trumps_victory_in_2020.png")
plt.savefig("COVID-19_rates_as_a_function_of_Trumps_victory_in_2020.svg")
plt.show()
In [63]:
plt.figure(figsize=(24,16))
ax2 = host_subplot(111, axes_class=axisartist.Axes)
df.plot(x="Victory", y="Hospitalizations/100", kind="scatter", ax=ax2, marker=hospitalizations_marker, color=hospitalizations_color)
ax2.set_ylabel("Hospitalizations/100 people", color=hospitalizations_color)
for i, point in df.iterrows():
    ax2.text(point['Victory'], point['Hospitalizations/100'], point['County'], size=12)
ax2.set_xlabel("Trump's margin of victory")
ax2.plot(x_lin, y_hospitalizations, color=hospitalizations_color)
plt.savefig("COVID-19_Hospitalization_rates_as_a_function_of_Trumps_victory_in_2020.png")
plt.savefig("COVID-19_Hospitalization_rates_as_a_function_of_Trumps_victory_in_2020.svg")
plt.show()
In [64]:
plt.figure(figsize=(24,16))
ax1 = host_subplot(111, axes_class=axisartist.Axes)
df.plot(x="Victory", y="Cases/100", kind="scatter", ax=ax1, marker=cases_marker, color=cases_color)
ax1.set_ylabel("Cases/100 people", color=cases_color)
for i, point in df.iterrows():
    ax1.text(point['Victory'], point['Cases/100'], point['County'], size=12)
ax1.set_xlabel("Trump's margin of victory")
ax1.plot(x_lin, y_cases, color=cases_color)
plt.savefig("COVID-19_Cases_rates_as_a_function_of_Trumps_victory_in_2020.png")
plt.savefig("COVID-19_Cases_rates_as_a_function_of_Trumps_victory_in_2020.svg")
plt.show()
In [65]:
plt.figure(figsize=(24,16))
ax3 = host_subplot(111, axes_class=axisartist.Axes)
df.plot(x="Victory", y="Deaths/100", kind="scatter", ax=ax3, marker=deaths_marker, color=deaths_color)
ax3.set_ylabel("Deaths/100 people", color=deaths_color)
for i, point in df.iterrows():
    ax3.text(point['Victory'], point['Deaths/100'], point['County'], size=12)
ax3.set_xlabel("Trump's margin of victory")
ax3.plot(x_lin, y_deaths, color=deaths_color)
plt.savefig("COVID-19_death_rates_as_a_function_of_Trumps_victory_in_2020.png")
plt.savefig("COVID-19_death_rates_as_a_function_of_Trumps_victory_in_2020.svg")
plt.show()
In [68]:
plt.figure(figsize=(24,16))
ax3 = host_subplot(111, axes_class=axisartist.Axes)
# xfer_out  xfer_in
df.plot(x="Victory", y="xfer_out", kind="scatter", ax=ax3, marker=deaths_marker, color=deaths_color)
ax3.set_ylabel("Patients leaving the county", color=deaths_color)
for i, point in df.iterrows():
    ax3.text(point['Victory'], point['xfer_out'], point['County'], size=12)
ax3.set_xlabel("Trump's margin of victory")
plt.savefig("COVID-19_patients_leaving_as_a_function_of_Trumps_victory_in_2020.png")
plt.savefig("COVID-19_patients_leaving_as_a_function_of_Trumps_victory_in_2020.svg")
plt.show()
In [69]:
plt.figure(figsize=(24,16))
ax3 = host_subplot(111, axes_class=axisartist.Axes)
# xfer_out  xfer_in
df.plot(x="Victory", y="xfer_in", kind="scatter", ax=ax3, marker=deaths_marker, color="g")
ax3.set_ylabel("Patients leaving the county", color=deaths_color)
for i, point in df.iterrows():
    ax3.text(point['Victory'], point['xfer_in'], point['County'], size=12)
ax3.set_xlabel("Trump's margin of victory")
plt.savefig("COVID-19_patients_arriving_as_a_function_of_Trumps_victory_in_2020.png")
plt.savefig("COVID-19_patients_arriving_as_a_function_of_Trumps_victory_in_2020.svg")
plt.show()